Fuzzy clustering algorithms for mixed feature variables
نویسندگان
چکیده
This paper presents fuzzy clustering algorithms for mixed features of symbolic and fuzzy data. El-Sonbaty and Ismail proposed fuzzy c-means (FCM) clustering for symbolic data and Hathaway et al. proposed FCM for fuzzy data. In this paper we give a modi3ed dissimilarity measure for symbolic and fuzzy data and then give FCM clustering algorithms for these mixed data types. Numerical examples and comparisons are also given. Numerical examples illustrate that the modi3ed dissimilarity gives better results. Finally, the proposed clustering algorithm is applied to real data with mixed feature variables of symbolic and fuzzy data. c © 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Clustering Large Data with Mixed Values Using Extended Fuzzy Adaptive Resonance Theory
Clustering is one of the technique or approach in content mining and it is used for grouping similar items. Clustering software datasets with mixed values is a major challenge in clustering applications. The previous work deals with unsupervised feature learning techniques such as k-Means and C-Means which cannot be able to process the mixed type of data. There are several drawbacks in the prev...
متن کاملStudy on Clustering Large Data Using Fuzzy Adaptive Resonance Theory
clustering is an approach that is used to form group of similar classes. Here to cluster the mixed type of data the unsupervised feature learning was used to achieve the sparse representation (SR) which makes it easier for the clustering algorithms to separate the data. SR provides simple interpretation of the input data in terms of small number of parts by extracting the unknown composition in...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملGenerating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms
UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 141 شماره
صفحات -
تاریخ انتشار 2004